首页 > 工程造价 >造价学术 >造价其他资料 > BP人工神经网络模型在太湖水污染指标预测中的应用

BP人工神经网络模型在太湖水污染指标预测中的应用

原价 100 积分

促销价 50 评分 4.8 积分

*温馨提示:该数据为用户自主上传分享,如有侵权请 举报联系客服处理。
报错
  • 详情
  • 2021-04-26
  • 简介
  • pdf
  • 360KB
  • 页数 4P
  • 阅读 99
  • 下载 24
【目的】利用BP人工神经网络模型预测太湖水污染指标,为探讨湖泊水污染物变化规律提供参考。【方法】利用2004~2010年浙江嘉兴王江泾断面自动监测站4项水质指标,建立了太湖水污染BP人工神经网络模型,并对太湖2012年前5周的水质情况进行预测。【结果】建立了浙江嘉兴王江泾断面的4项水质指标浓度的三层BP神经网络预测模型,其预测精度较高,对湖泊水环境污染物预测的适应性较好;对太湖2012年前5周的水质情况进行预测,结果表明,2012年前5周水质污染情况加重,基本为Ⅴ类水质,符合太湖水质污染情况发展态势。【结论】BP人工神经网络具有很强的非线性映射能力和柔性的网络结构,与传统的统计建模方法相比,其预测精度较高,能较好地反映水质指标的内在变化规律,为控制水环境污染提供了科学预测方法。

对不起,您暂无在线预览权限,如需浏览请

立即登录