首页 > 特色专题 >房地产 >房地产运营 > 基于神经网络房地产价格指数的预测研究(续)
基于神经网络房地产价格指数的预测研究(续)

基于神经网络房地产价格指数的预测研究(续)

原价 100 积分

促销价 50 评分 4.7 积分

*温馨提示:该数据为用户自主上传分享,如有侵权请 举报联系客服处理。
报错
  • 详情
  • 2021-04-27
  • 简介
  • pdf
  • 2.2MB
  • 页数 13P
  • 阅读 96
  • 下载 26
研究表明,房地产价格指数常表现为非线性,要对它进行预测就必须利用一种能模拟非线性的模型。从理论上讲,神经网络能够无限逼近非线性函数,所以本文便尝试采用神经网络模型作为预测的模型。本文具体运用的是基于误差反向传播算法的多层前馈网络(BP神经网络)和径向基函数(RBF)神经网络。首先利用BP神经网络对采集到的中国房地产价格指数进行训练和模拟,最后进行预测,并比较预测结果和真实值,发现误差比较大,一方面是因为选取的样本数据少,另一方面是因为BP神经网络本身具有缺陷。为了克服BP神经网络预测的缺陷,本文接着运用RBF神经网络对选取的数据进行训练和模拟,用训练好的网络来进行预测,得到的预测结果与真实值相比较,误差很小,而且RBF神经网络的运行速度要比BP神经网络快很多。经过比较可以得出RBF神经网络用于经济预测可以达到很好的效果。

对不起,您暂无在线预览权限,如需浏览请

立即登录