首页 > 工程技术 >水利工程 >公路桥梁 > 公路隧道交通量预测的粒子群高斯过程耦合模型

公路隧道交通量预测的粒子群高斯过程耦合模型

原价 20.00

促销价 1.00 评分 4.4

*温馨提示:该数据为用户自主上传分享,如有侵权请 举报联系客服处理。
报错
  • 详情
  • 2021-03-23
  • 简介
  • pdf
  • 487KB
  • 页数 7P
  • 阅读 92
交通量的预测对公路隧道运营期通风系统的节能降耗具有重大意义,将新型小样本学习机器高斯过程引入隧道交通量预测,提出了一种组合核函数,用以改善单一核函数高斯过程的泛化性能,在网络训练过程中采用粒子群优化算法,自动搜寻泛化性能最好的高斯过程超参数,形成粒子群高斯过程耦合算法,并编写了相应的计算程序.对某公路隧道交通量进行了预测,结果表明:组合核函数高斯过程最大预测相对误差仅为4.41%,平均相对误差为1.96%;两种单一核函数高斯过程最大预测相对误差均为6.68%,平均相对误差分别为2.7%和2.67%;粒子群高斯过程耦合模型可以高精度地用于隧道交通量预测,且组合核函数可以提高单一核函数的泛化性能,并为其他类似工程提供借鉴.

对不起,您暂无在线预览权限,如需浏览请

立即登录