首页 > 工程造价 >造价学术 >造价其他资料 > 粗糙集-神经网络在铝电解故障诊断中的应用
粗糙集-神经网络在铝电解故障诊断中的应用

粗糙集-神经网络在铝电解故障诊断中的应用

原价 100 积分

促销价 50 评分 4.6 积分

*温馨提示:该数据为用户自主上传分享,如有侵权请 举报联系客服处理。
报错
  • 详情
  • 2021-04-27
  • 简介
  • pdf
  • 627KB
  • 页数 4P
  • 阅读 102
  • 下载 22
目的通过对铝电解生产过程中的故障进行有效地诊断来提高铝的生产效率和节约能源.方法把粗糙集和神经网络结合起来应用在铝电解的故障诊断中.先用自组织特征映射网络(SOM)对初始数据进行离散化后得到决策表,然后用粗糙集理论对决策表进行约简得到最简决策表,根据最简决策表设计BP神经网络对铝电解中的故障进行诊断.结果用粗糙集对神经网络的输入数据进行预处理可以简化神经网络的结构,减少计算量和训练时间,从而提高整个诊断系统的诊断效率、故障诊断准确率在90%以上.结论该方法能够对铝电解中的故障做出正确的诊断.

对不起,您暂无在线预览权限,如需浏览请

立即登录