首页 > 工程造价 >造价学术 >造价其他资料 > 利用DGA-NN诊断油浸式电力变压器故障
利用DGA-NN诊断油浸式电力变压器故障

利用DGA-NN诊断油浸式电力变压器故障

原价 100 积分

促销价 50 评分 4.5 积分

*温馨提示:该数据为用户自主上传分享,如有侵权请 举报联系客服处理。
报错
  • 详情
  • 2021-04-27
  • 简介
  • pdf
  • 730KB
  • 页数 4P
  • 阅读 64
  • 下载 39
人工神经网络以其良好的非线性映射能力广泛应用于电力变压器故障诊断。为研究反向传播神经网络(BPNN)和概率神经网络(PNN)的学习过程、网络参数选择等问题,利用Matlab的神经网络工具箱结合油中溶解气体建立了BPNN和PNN的故障诊断模型,并对其性能做了分析和对比。结果表明,两种网络均能较好地实现变压器故障的实时诊断。因初始化权值的随机性,BPNN的输出结果具有差异性,收敛速度较慢,而PNN网络结构自适应确定,可以随时添加训练样本,且训练速度较快,适合于实现变压器故障的实时诊断。相同条件下,PNN的收敛速度约为BPNN的5倍。

对不起,您暂无在线预览权限,如需浏览请

立即登录