首页 > 工程造价 >造价学术 >造价其他资料 > 前馈神经网络在空调负荷预测中的应用

前馈神经网络在空调负荷预测中的应用

原价 100 积分

促销价 50 评分 4.7 积分

*温馨提示:该数据为用户自主上传分享,如有侵权请 举报联系客服处理。
报错
  • 详情
  • 2020-12-27
  • 简介
  • pdf
  • 327KB
  • 页数 4P
  • 阅读 94
  • 下载 27
空调系统负荷是一个典型的具有动态性、不确定性等随机特性的非线性模型,传统方式难以实现准确、快速地预测空调系统动态负荷。人工神经网络具有高度的非线性运算能力和很强的容错能力,其中最为广泛的是前馈神经网络和采用误差反向传播算法来计算网络权值。本文讨论当误差不为零或者不为线性函数,即二阶项S(w)不能忽略时的Hesse矩阵的近似计算,进而训练网络。研究结果表明,用该种神经网络预测空调负荷和计算的结果会较好地吻合。

对不起,您暂无在线预览权限,如需浏览请

立即登录