首页 > 工程造价 >造价学术 >造价其他资料 > 基于卷积神经网络的空心村高分影像建筑物检测方法

基于卷积神经网络的空心村高分影像建筑物检测方法

原价 100 积分

促销价 50 评分 4.6 积分

*温馨提示:该数据为用户自主上传分享,如有侵权请 举报联系客服处理。
报错
  • 详情
  • 2021-04-27
  • 简介
  • pdf
  • 879KB
  • 页数 7P
  • 阅读 97
  • 下载 30
基于卷积神经网络(CNN)提出了一种适用于空心村高分影像的建筑物自动检测方法,该方法利用多尺度显著性检测来获取包含建筑物信息的显著性区域,然后通过滑动窗口获取显著性区域内目标样本块,再将这些样本块输入训练好的CNN并结合SVM来实现分类。为检验方法有效性,选取高分影像进行实验,结果表明,显著性检测能够有效地获取主要目标,减弱其他无关目标的影响,降低数据冗余;卷积神经网络能够自动学习高层次的特征,基于CNN对高分影像进行建筑物检测,分类准确度可以达到97.6%,表明该方法具有较好的鲁棒性和有效性。

对不起,您暂无在线预览权限,如需浏览请

立即登录