首页 > 工程造价 >造价学术 >造价其他资料 > 基于BP人工神经网络的空调降温负荷预测

基于BP人工神经网络的空调降温负荷预测

原价 100 积分

促销价 50 评分 4.5 积分

*温馨提示:该数据为用户自主上传分享,如有侵权请 举报联系客服处理。
报错
  • 详情
  • 2020-12-27
  • 简介
  • pdf
  • 1.2MB
  • 页数 4P
  • 阅读 104
  • 下载 33
空调负荷是近年来增长较快的一类负荷,其特性对电网的电压稳定性影响很大。夏季影响空调负荷的因素主要是温度和湿度的变化。为了更好的预测空调降温负荷,研究了温度和湿度对空调负荷的影响。利用BP人工神经网络对电网空调负荷进行了预测,经过分析把日平均湿度量化成4段,和日平均湿度实际数值的模型进行计算比较,结果显示考虑日最高温度和日平均湿度量化为4段能更好的模拟温度、湿度和空调负荷之间的非线性关系,能更好的对电网空调负荷进行预测。

对不起,您暂无在线预览权限,如需浏览请

立即登录