首页 > 工程造价 >造价学术 >造价其他资料 > 基于人工神经网络的电力负荷预测算法研究

基于人工神经网络的电力负荷预测算法研究

原价 100 积分

促销价 50 评分 4.8 积分

*温馨提示:该数据为用户自主上传分享,如有侵权请 举报联系客服处理。
报错
  • 详情
  • 2020-12-27
  • 简介
  • pdf
  • 761KB
  • 页数 5P
  • 阅读 76
  • 下载 36
电力负荷数据管理系统是电力营销技术支持系统的组成部分,对电力系统运行有着重要的辅助作用。采用神经网络预测模型,设计输入变量和确定神经网络结构的方法和算法,可以使得从历史样本知识数据到最终预测模型的建模过程变得简单明了,便于实际应用。预测方法是使用MATLAB建立模型,对24个负荷点预测,采用多输入单输出的神经网络预测每天的整点负荷值。因为电力负荷与环境因素有关,在输入、输出向量设计中输入变量加入天气特征值。根据输入、输出向量对BP网络设计。该算法结构简单,最后进行短期负荷预测仿真,仿真结果表明其有较好的预测精度。该模型具有网络结构较小,训练时间短的优点,并考虑不同小时负荷差异,易于实现,具有较高的预测精度,预测误差在15%以下,一定程度上克服传统算法收敛速度慢,容易陷入局部积小的缺点。

对不起,您暂无在线预览权限,如需浏览请

立即登录