首页 > 工程造价 >造价学术 >造价其他资料 > 基于BP神经网络的农资库存数据插补技术
基于BP神经网络的农资库存数据插补技术

基于BP神经网络的农资库存数据插补技术

原价 100 积分

促销价 50 评分 4.4 积分

*温馨提示:该数据为用户自主上传分享,如有侵权请 举报联系客服处理。
报错
  • 详情
  • 2021-09-22
  • 简介
  • pdf
  • 166KB
  • 页数 4P
  • 阅读 84
  • 下载 24
当前一般按照数据的后验分布,为缺失值插入估计值,通常低估了统计量的方差,导致统计量估计置信范围降低,检测显著性降低。为此,提出1种新的基于BP神经网络的农资库存数据插补技术。为了增强不同年份农资库存数据的可比性,对数据进行归一化处理。针对训练的BP神经网络,通过平均绝对误差、均方误差、平均预测误差、平均绝对百分误差完成统计分析,评价模拟值和观测模拟值间的离散程度。分析了BP神经网络结构,对农资库存数据进行插补的过程中,构造双向时间识别序列,改变应用前一时间段农资库存数据预测后期数据的传统方式,采用缺失时间段前后已有农资库存数据共同对缺失数据进行预测。完成农资库存数据的处理后,需对已有样本进行训练,如果检验拟合度指标值高于0. 8,则认为训练结果可靠,从而完成对缺失值的预测,实现农资库存数据插补。试验结果表明,所提技术插补精度高。

对不起,您暂无在线预览权限,如需浏览请

立即登录